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We consider topological superconductors and topological insulator/superconductor structures in the presence
of multiple static vortices that host Majorana modes and focus on the Majorana tunneling processes between
vortices. It is shown that these tunnelings generally lift the degeneracy of the many-body ground state in a
nonuniversal way, sensitive to microscopic details at the smallest length-scales determined by the underlying
physical problem. We also discuss an explicit realization of the Jackiw-Rossi zero-mode in a topological
insulator/superconductor structure with zero chemical potential. In this case, the exact degeneracy of the
many-anyon ground state is protected by an additional chiral symmetry and can be linked to the rigorous index
theorem. However, the existence of a nonzero chemical potential, as expected in realistic solid-state structures,
breaks chiral symmetry and removes protection, which leads to the degeneracy being lifted. Finally, we discuss
the implications of our results for the collective states of many-anyon systems. We argue that quantum dy-
namics of vortices in realistic systems is generally important and may give rise to effective time-dependent
gauge factors that enter interaction terms between Majorana modes in many-anyon systems.
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I. INTRODUCTION

Topological quantum computation hinges on the existence
of non-Abelian excitations, which arise in certain topological
phases of matter.1 The first example of such a state is frac-
tional quantum hall �FQH� state with �=5 /2 filling fraction.
This state is believed to be described by the Moore-Read
Pfaffian wave function2 which supports non-Abelian
excitations.3 It was shown later that the Moore-Read Pfaffian
wave function of composite fermions is related to the BCS
wave function with p-wave pairing2,4–6 establishing the con-
nection between FQH state �=5 /2 and px+ ipy superconduct-
ors �SC�. Certain vortex excitations in chiral p-wave super-
conductors carry zero-energy modes and obey non-Abelian
statistics.5,7,8 These topologically protected zero modes can
be occupied by Majorana fermions and are responsible for
topological ground-state degeneracy. Namely, 2n vortices
with zero modes residing in vortex cores span
2n−1-dimensional Hilbert space. Non-Abelian statistics of
vortices can also be derived within this framework.8 Making
use of their intrinsic nonlocal quantum entanglement, vorti-
ces carrying Majorana modes can be exploited to realize to-
pological qubits which are inherently decoherence free and
are protected against smooth local perturbations, thus provid-
ing a very appealing platform for fault-tolerant topological
quantum computation.9–11

From the perspective of experimental realization of topo-
logical phases, there is some preliminary evidence that �
=5 /2 FQH state may have non-Abelian excitations.12–14

Spin-triplet px+ ipy pairing superfluidity/superconductivity
are believed to occur in A phase of superfluid 3He �Refs. 15
and 16� and strontium ruthenates17–21 in which half-quantum
vortices are non-Abelian.8,22 There are also proposals to re-
alize chiral p-wave superfluids in ultracold atom
systems.23–28 The theoretical description of these systems es-
sentially falls into the category of a spinless px+ ipy super-
conductor. Apart from these examples, there also exist a

number of proposals involving various heterostructures of a
three dimensional topological insulator �TI� and a SC,29,30

semiconductor and superconductor31,32,34 and superconductor
and ferromagnet.33 These systems seem to be more experi-
mental accessible. We also note that there are proposals to
realize Majorana fermions in one-dimensional systems35–39

and on the surface of a three dimensional Z2 topological
superfluid/superconductor.40–43

We note here that the emergent Majorana excitations in
these physical systems are closely related to zero modes that
have been long known in the context of high-energy physics,
where chiral fermions in the presence of topological defects
�domain walls, vortices, etc.� give rise to massless excita-
tions within the topological defects.44 One such example is a
Jackiw-Rossi zero-mode that was predicted to appear in a
vortex-chiral-fermion system. An important ingredient of the
original Jackiw-Rossi model45 is the existence of a conserved
chiral current, which allows one to enumerate zero-energy
modes according to their chirality. It was subsequently estab-
lished by Weinberg46 that for the Dirac operator the differ-
ence between the numbers of zero modes of opposite chiral-
ity is given by the winding number of the superconducting
order parameter phase. Thus, the conservation of the chiral
current enables the use of a powerful Atiyah-Singer-type in-
dex theorem,47,48 which relates a number of zero modes to
the total topological charge of the vortex configuration. In
particular, the theorem ensures that the exact degeneracy of
the many-body ground state is preserved and no tunneling
process can possibly lift it. As discussed in Refs. 29 and 49,
a Hamiltonian considered by Jackiw-Rossi can be realized in
a TI/superconductor heterojunction. However, as shown be-
low a realistic solid-state structure of this type is generally
described by a low-energy theory, which has the exact chiral
symmetry only if the chemical potential of excitations is ex-
actly zero. Due to the nontrivial way the chemical potential
enters the Bogoliubov-de Gennes �BdG� equations, there is
no conserved chiral current, and one cannot enumerate zero
modes by their chirality anymore. Therefore, the connection
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between the analytical and topological index established in
Ref. 46 does not apply in this case, and intervortex tunneling
leads to lifting of the ground-state degeneracy of a many-
anyon system for any finite chemical potential. Clarification
of the applicability of the index theorem to the nonrelativistic
topological superconductors is the main result of the paper.

Understanding the fate of ground-state degeneracy of
many-anyon system in realistic solid-state structures is a dif-
ficult problem of fundamental importance and of relevance
to practical realization of topological quantum computing. In
this paper we address one mechanism that may lift the
ground state degeneracy associated with the tunneling pro-
cesses between spatially separated vortices. The presence of
the bulk gap protects ground state degeneracy from thermal
fluctuations at low temperature leaving out only processes of
Majorana fermion quantum tunneling between vortices. Ge-
neric features of tunneling of topological charges have been
explored recently.50 The lifting of ground state degeneracy
due to intervortex tunneling for a pair of vortices have been
studied numerically for �=5 /2 quantum Hall state,51,52 px
+ ipy superconductor53 and Kitaev’s honeycomb lattice
model.54 Analytical calculation has been carried out for the
model of spinless px+ ipy superconductors.55

Generally energy splitting due to intervortex tunneling is
determined by the wave function overlap of localized Majo-
rana bound states. In this paper we calculate the splitting for
both spinless px+ ipy superconductor and a model of Dirac
fermions interacting with the scalar superconducting pairing
potential realized in a TI/SC heterostructure. In both cases,
besides the expected exponential decay behavior, it is found
that the prefactor exhibits an oscillatory behavior with the
intervortex distance which originates from the interference of
different bound state wave functions oscillating with the
Fermi wavelength. This is generic situation for weak-
coupling superconductors where the Fermi energy EF is
much larger than the superconducting gap �. In this paper,
we also consider several cases where the Fermi wavelength
is much larger than the coherence length. This scenario is
relevant, for example, for TI/SC heterostructure as well as
some other systems involving the proximity-induced super-
conductivity. When chemical potential is tuned to the Dirac
point ��→0�, we find indeed that the splitting in TI/SC het-
erostructure vanishes. This fact can be attributed to an addi-
tional symmetry possessed by the system at �=0, the chiral
symmetry as discussed above.

The paper is organized as follows. In Sec. II we review
the Bogoliubov-de Gennes equations for spinless px+ ipy su-
perconductor as well as TI/SC heterostructure and show that
there are Majorana zero-energy solutions localized at the
vortex core. Then using these bound state wave functions,
we calculate energy splitting of zero-energy states due to
intervortex tunneling in Sec. III. We present our main results
in Sec. IV by interpreting the explicit splitting calculations
presented in the previous section from the perspective of the
index theorem which establishes the relation between zero-
energy modes and topological index of the order parameter.
Implications of our result for topological quantum computa-
tion and interacting many anyons system are discussed in
Sec. V.

II. ZERO-ENERGY BOUND STATES IN
SUPERCONDUCTING VORTEX CORES

In this Section, we review the analytic solution of the
Bogoliubov-de Gennes equation for a zero-energy Majorana
mode in a p+ ip superconductor and at a topological
insulator/superconductor interface. The main results here are
Eqs. �9� and �25� and they are used further in Sec. III to
calculate the energy-level splitting due to tunneling.

A. Bound states in px+ ipy superconductors

We start with the mean-field Hamiltonian for spinless px
+ ipy superconductor

HBCS =� d2r�̂†�r��−
�2

2m
− ���̂�r�

+
1

2
� d2rd2r���̂†�r���r,r���̂†�r�� + h.c.� , �1�

where the gap operator �̂�r ,r�� is given by56

��r,r�� =
1

kF
�� r + r�

2
���x� + i�y����r − r�� . �2�

This Hamiltonian can be derived as a continuum limit of a
lattice model of spinless fermions.57 To diagonalize this

Hamiltonian we perform Bogoliubov transform �̂�r�
=�n��̂nun�r�+ �̂n

†vn
��r�� where n labels different quasiparticle

eigenstates. Canonical commutation relation �HBCS, �̂n�=
−En�̂n yields corresponding BdG equation

HBdG	u�r�
v�r� 
 = E	u�r�

v�r� 
 , �3�

where BdG Hamiltonian reads

HBdG =� −
�2

2m
− �

1

kF
���r�,�x + i�y


−
1

kF
����r�,�x − i�y


�2

2m
+ � � �4�

with anticommutator being defined as �a ,b
= �ab+ba� /2.
Before discussing the zero-energy solutions of BdG equa-

tions, it is instructive to review the symmetries of the
Bogoliubov-de-Gennes Hamiltonian �4�. Particle-hole sym-
metry of BdG Hamiltonian follows from �� ,HBdG
=0
where �=	xK with K being complex conjugation operator
and 	x being Pauli matrix in Nambu �particle-hole� space.58

Besides particle-hole symmetry BdG Hamiltonian �4� has no
other generic symmetries. Thus, it is a typical example of the
symmetry class D in the general classification scheme of
topological insulators and superconductors.59,60 The direct
consequence of particle-hole symmetry is that the eigenstates
of HBdG�4� come in pairs, with opposite eigenenergies. That
is, if 
= �un ,vn�T is a solution of Eq. �3� with eigenvalue En,
then �
= �vn

� ,un
��T must be a solution with the eigenvalue

�−En�. Particularly, a nondegenerate zero-energy state must
obey the following constraint: �
=�
. Because �2=1
which implies ���=1, � must be a pure phase �=ei�. We can
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make a global gauge transformation and introduce Nambu
spinors as 
�=exp�−i� /2�
 then �
�=
�. Thus, a nonde-
generate zero-energy state should always satisfy u�=v. The
corresponding quasiparticle operator

�̂† =� d2r�u�r��̂†�r� + v�r��̂�r��

is then self-Hermitian obeying �̂= �̂†, i.e., �̂ is a Majorana
fermion operator.

We will now show that such zero-energy states appear in
the cores of vortices in chiral p-wave superconductors. The
localized states in the vortex cores are known as Caroli-de-
Gennes-Matricon states �CdGM�.61 In conventional s-wave
superconductors all CdGM states have nonzero energies.7

However, due to the chirality of the order parameter px
+ ipy superconductors can host zero-energy bound
states.7,15,58,62,63 The nondegenerate zero-energy bound states

are topologically protected by the particle-hole symmetry.
The existence of the zero-energy solution in the vortices of
the chiral p-wave superconductors can be demonstrated ex-
plicitly by solving BdG equations.58 Similar to the s-wave
superconductors,61,64 a vortex with vorticity l�i.e., l flux
quanta hc /2e is trapped� can be modeled as ��r�= f�r�eil


where 
 is the phase of the order parameter and f�r� is the
vortex profile which can be well approximated by f�r�
=�0 tanh�r /��.64 Here �0 is the mean-field value of super-
conducting order parameter and �=vF /�0 is coherence
length. We will mainly focus on the case l=1. Taking advan-
tage of rotational symmetry, BdG equation can be decoupled
into angular momentum channels. The wave function can be
written as 
m�r�=eim
�ei
um�r� ,e−i
vm�r��. As argued
above, a nondegenerate zero mode requires �
�
 which
can only be satisfied for m=0. The radial part of the BdG
equations in m=0 channel then reads

� −
1

2m
��r

2 +
1

r
�r −

1

r2� − �
1

kF
	 f�r���r +

1

2r
� +

f��r�
2



−

1

kF
f�r�	��r +

1

2r
� +

f��r�
2


 1

2m
��r

2 +
1

r
�r −

1

r2� + � �	u0�r�
v0�r� 
 = 0. �5�

Given that the radial part of the BdG Eq. �5� is real, one can
choose u0�r� and v0�r� to be real. Then the condition �
0
=
0 reduces to v0=�u0 with �= �1. Using this constraint,
the differential equation for u0 becomes

���r
2 +

1

r
�r −

1

r2� − 2m� −
2�

vF
	 f��r +

1

2r
� +

f�

2

�u0 = 0.

One can seek the solution of the above equation in the form
u�r�=��r�exp���0

rdr�f�r��� leading to

�� +
��

r
+ �2m� −

f2

vF
2 −

1

r2�� = 0. �6�

Here the profile f�r�=�0 tanh�r /�� vanishes at the origin and
reaches �0 away from vortex core region. For our purpose, it
is sufficient to consider the behavior of solution outside the
core region where f�r� is equal to its asymptotic bulk value
�0. It is obvious now that �=−1 yields the only normalizable
solution.

When �0
2�2m�vF

2 which is the case for weak-coupling
BCS superconductors, Eq. �6� becomes first order Bessel
equation. Thus, the solution is given by Bessel function of
the first kind Jn�x�

��r� = N1J1�r�2m� − �0
2/vF

2� , �7�

where N1 is the normalization constant determined by the
following equation 4��rdr�u0�r��2=1. In the opposite limit
�0

2�2m�vF
2 , the solution of Eq. �6� is given by first-order

imaginary Bessel function

��r� = N2I1�r��0
2/vF

2 − 2m�� . �8�

The function In�r� diverges when r→�. But the radial wave
function u0�r� remains bounded as long as ��0. This is
consistent with the fact that �=0 separates Abelian topologi-
cal phase ���0� and non-Abelian phase ���0�.5 The criti-
cal value �0

2=2m�vF
2 corresponds to closing of the bulk gap.

At this point the notion of a localized bound state becomes
meaningless. Indeed, at this point the solution of Eq. �6�
scales as ��r��r.

We summarize this section by providing an explicit ex-
pression for zero-energy eigenfunction:


0�r� = ��r�exp	i�
 −
�

2
�	z −

1

vF
�

0

r

dr�f�r��
 , �9�

where ��r� is given by Eq. �7� for �0
2�2m�vF

2 and Eq. �8�
for �0

2�2m�vF
2 .

Using the zero-energy solution obtained for one vortex
one can be easily write down wave function for multiple
vortices spatially separated so that tunneling effects can be
ignored. Assume there are 2N vortices pinned at positions
Ri , i=1, . . . ,2N. The superconducting order parameter can be
represented as

��r� = �
i=1

2N

f�r − Ri�exp	i�
i


i�r�
 , �10�

where 
i�r�=arg�r−Ri�. Near the kth vortex core, the phase
of the order parameter is well approximated by 
k�r�+�k
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with �k=�i�k
i�Rk� which is accurate in the limit of large
intervortex separation. Then in the vicinity of kth vortex
core, a zero energy bound state can be found56


k�r� = e−i	z��/2���rk�exp	−
1

vF
�

0

rk

dr�f�r��

�exp	i�
k +

�k

2
�	z
 . �11�

where rk= �r−Rk�. Correspondingly, there are 2N Majorana
fermion modes localized in the vortex cores. They can be
combined pairwise to form N Dirac fermions. Specifically,
two Majorana fermions �̂i and �̂ j localized in ith and jth
vortex cores, respectively, are combined into a Dirac fermion

ĉ† =
1
�2

��̂i + i�̂ j� . �12�

These N Dirac fermions can be occupied or unoccupied, al-
lowing for enumeration of all degenerate ground states.1

B. Bound states in the Dirac fermion model coupled with
s-wave superconducting scalar field

We now discuss the zero-energy bound states emerging in
the model of Dirac fermions interacting with the supercon-
ducting pairing potential. This model is realized at the inter-
face of a three-dimensional strong topological insulator hav-
ing an odd number of Dirac cones per surface and an s-wave
superconductor.29 Due to the proximity effect an interesting
topological state is formed at the two-dimensional �2D� in-
terface between the insulator and superconductor. We will
now discuss the emergence of Majorana zero-energy states at
the TI/SC heterostructure.29 This model was also considered
earlier in the high-energy context by Jackiw and Rossi.45

Three-dimensional time-reversal invariant topological in-
sulators are characterized by an odd number of Dirac cones
enclosed by Fermi surface.65–67 The metallic surface state is
described by the Dirac Hamiltonian. The nontrivial Z2 topo-
logical invariant ensures the stability of metallic surface
states against perturbations which preserve time-reversal
symmetry. When chemical potential � is close to the Dirac
point the TI/SC heterostructure can be modeled as29,68

H = �̂†�v� · p − ���̂ + ��̂↑
†�̂↓

† + h.c, �13�

where �= ��↑ ,�↓�T and v is the Fermi velocity at Dirac
point. The Bogoliubov-de Gennes equations are given by

HBdG
�r� = E
�r� , �14�

HBdG = �� · p − � �

�� − � · p + �
� , �15�

where 
�r� is the Nambu spinor defined as 
= �u↑ ,u↓ ,v↓ ,
−v↑�T. At �=0 the BdG Hamiltonian above can be conve-
niently written in terms of the Dirac matrices

HBdG = �
a=1,2

��apa + �ana� . �16�

Here �a and �a are 4�4 Dirac matrices defined as �1
=�x	z , �2=�y	z, and �1=	x , �2=	y and n= �Re � ,−Im ��.
One can check that these matrices satisfy the following prop-
erties: ��a ,�b
= ��a ,�b
=�ab and ��a ,�b
=0. The fifth Dirac
matrix �5 is given by �5=−�1�2�1�2=	z�z.

As in the case of spinless px+ ipy case, we first discuss the
symmetries of Eq. �15�. The particle-hole symmetry is now
�=�y	yK where 	 are Pauli matrices operating in Nambu
�particle-hole� space. The difference with the previous case is
the presence of time-reversal symmetry: �
= i�yK , �� ,HBdG�=0 in this model. Moreover, when �=0
there is additional chiral symmetry in the model which can
be expressed as ��5 ,HBdG
=0. We will see that the chiral
symmetry has important implications for degeneracy split-
ting. Bogoliubov quasiparticles are defined from solutions of
BdG equations as

�̂† =� d2r�
�

u��r��̂�
†�r� + v��r��̂��r� . �17�

If we require �̂ to be a Majorana fermion, i.e., �̂= �̂†, the
necessary and sufficient condition is v�=u�

� up to a global
phase.

A vortex with vorticity l can be introduced in the order
parameter as ��r�= f�r�eil
. Rotational symmetry allows de-
composition of solutions into different angular momentum
channels


m�r� = eim
�
e−i�/4�↑�r�

ei�/4�↓�r�ei


e−i�/4�↓�r�e−il


ei�/4�↑�r�e−i�l−1�

� .

We define 
̃0= ��↑ ,�↓ ,�↓ ,�↑�T for later convenience.
Similar to the previous analysis, we first look for nonde-

generate Majorana zero-energy state. The Majorana condi-
tion �
�
 fixes the value of m to be l−1

2 for odd l. For
even l, there is no integer m satisfying Majorana condition so
no Majorana zero mode exists. The radial part of BdG equa-
tion then becomes

	Hr f�r�

f�r� − �yHr�y


̃0�r� = 0 �18�

Hr = � − � v��r +
m + 1

r
�

− v��r −
m

r
� − � � . �19�

Here 
̃0 is assumed real. Since we are interested in nonde-
generate solution, 
0 must be simultaneously an eigenstates
of �y	y �particle-hole symmetry�. This condition implies that
�↑=−��↑ , �↓=��↓ where �= �1. Taking into account
above constraints 4�4 BdG equation reduces to
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� − � v��r +
m + 1

r
� + �f

− v��r −
m

r
� − �f − � ���↑

�↓
� = 0.

�20�

The solution of the above equation can be easily obtained for
��0

��↑

�↓
� = N3� Jm��

v
r�

Jm+1��

v
r� �e−��0

rdr�f�r��. �21�

Obviously, we should take �=1 to make radial wave func-
tions normalizable. Here N3 is the normalization constant
whose analytical form is given in �Eq. �A7��.

The case of �=0 is special due to the presence of an
additional symmetry of BdG Hamiltonian-chiral symmetry.
Imposing the boundary condition at r→0 that wave function
must remain finite, for l�0 the solution of Eq. �20� becomes

��↑

�↓
� � �rm

0
�e−�0

rdr�f�r��, �22�

and if l�0, m+1�0,

��↑

�↓
� � � 0

r−�m+1� �e−�0
rdr�f�r��. �23�

Particle-hole symmetry combined with the analyticity of the
above solutions at r→0 constraints the integer 0�m� l−1.
Similar conditions apply to the negative l solutions. Thus,
there are exactly �l� zero-energy modes for any l as found
previously in Ref. 45. If l is even, all these solutions are
Dirac fermionic modes. However, if l is odd, there are l−1
Dirac fermionic modes and one Majorana zero-energy mode
as given in Eqs. �22� and �23�. Because the chiral symmetry
also relates eigenstates with positive energies to those with
negative energies which follows from �5HBdG�5=−HBdG,
one can always require the zero-energy eigenstates to be
eigenstates of �5. The wave function in Eq. �22� is an eigen-
state of �5 with eigenvalue 1 while wave function �Eq. �23��
has eigenvalue −1. We define eigenstates of �5 with eigen-
value �1 as � chirality.

To summarize we have obtained the Majorana zero-
energy bound state attached to the vortex with odd vorticity


0�r� = ei�l−1�
/2�
e−i�/4�↑�r�

ei�/4�↓�r�ei


e−i�/4�↓�r�e−il


− ei�/4�↑�r�e−i�l−1�

� �24�

Generalization to the case of many vortices is straightfor-
ward. Order parameter with 2N vortices pinned at Ri is al-
ready given in �Eq. �10��. Assuming that they are well sepa-
rated from each other, we can find an approximate zero-
energy bound state localized in each vortex core


i�r� = ei�l−1�
i/2ei�i	z/2�
e−i�/4�↑�ri�

ei�/4�↓�ri�ei
i

e−i�/4�↓�ri�e−il
i

− ei�/4�↑�ri�e−i�l−1�
i
� �25�

the construction of N Dirac fermions and 2N−1 ground state
Hilbert space are the same as the case of spinless px+ ipy
superconductors.

III. DEGENERACY SPLITTING DUE TO INTERVORTEX
TUNNELING

The ground state degeneracy, which is crucial for topo-
logical quantum computation with non-Abelian anyons,
heavily relies on the assumption that intervortex tunneling is
negligible. When tunneling effects are taken into account
zero-energy bound states are usually splitted and the ground
state degeneracy is lifted. Besides, the sign of energy split-
ting is important for understanding many-body collective
states.69

We now discuss a general formalism to calculate the en-
ergy splitting. We focus on the case of two classical vortices
each with vorticity l=1 located at certain fixed positions R1
and R2. To develop a physical intuition, it is useful to view a
vortex as a potential well, which may host bound states in-
cluding zero-energy states while the regions where supercon-
ducting gap is finite play the role of a potential barrier.
Therefore, the two-vortex problem resembles the double-
well potential problem in single-particle quantum mechanics
�sometimes referred to as the Lifshitz problem in the
literature70�. The solution to this simple problem in one-
dimensional quantum mechanics is readily obtained70 by
considering symmetric and antisymmetric combinations of
single-well wave-functions �which can be taken within the
quasiclassical approximation for high barriers� and the over-
lap of these wave-functions always selects the symmetric
state as the ground state in accordance with the elementary
oscillation theorem �i.e., the ground state has no nodes�. We
note that both quasiclassical approximation and the Lifshitz
method are not specific to the Schrödinger equation but ac-
tually represent general mathematical methods of solving
differential equations of certain types. Moreover, these meth-
ods can be applied to rather generic matrix differential op-
erators, and such a generalization has been carried out by one
of the authors in a completely different context of
magnetohydrodynamics,71 where interestingly the relevant
differential operator appears to be mathematically similar to
the BdG Hamiltonian. These considerations suggest that one
can use the generalized Lifshitz method to obtain the split-
ting of zero modes of the BdG equations, by considering
certain linear combinations of the individual Majorana
modes in the two vortices and calculating their overlap,
which reduces to a boundary integral along a path between
the two vortices. Also, if the intervortex separation is large,
one can use the semiclassical form of the Majorana wave-
functions �effectively their large-distance asymptotes� to ob-
tain quantitatively accurate results. Let us note here that
apart from a technically more complicated calculation that
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needs to be carried out for the BdG equation, another impor-
tant difference between this problem and the simple Lifshitz
problem is that we cannot rely on any oscillation theorem
and there is no way to determine a priori which state has a
lower energy. As discussed below, this “uncertainty” is fun-
damental to this problem and is eventually responsible for a
fast-oscillating energy splitting with intervortex separation.

With the two zero-energy eigenstates 
1 and 
2 localized
at R1 and R2 �given by Eq. �11� for spinless px+ ipy super-
conductor and by Eq. �24� for TI/SC heterostructure�, we can
construct approximate eigenstate wave functions in the case
of two vortices: 
�= 1

�2
�
1�ei�
2� analogous to the sym-

metric and antisymmetric wave functions in a double-well
problem with energies E�, respectively. The phase factor ei�

can be determined from particle-hole symmetry which re-
quires that new eigenstates 
+ with energy E+=�E and 
−
with energy E−=−�E be related by �
+=
−. Since 
1 and

2 are real �Majorana� eigenstates, one finds �
+= 1

�2
�
1

+e−i�
2�=
−. Thus, one arrives at e2i�=−1 which fixes �
= �� /2. In the rest of the text we take �=� /2 for conve-
nience. The corresponding quasiparticle operator can be
identified with the Dirac fermion operator. We explicitly
show this for the case of spinless px+ ipy superconductor

ĉ =
1
�2

��̂1 − i�̂2� =� d2r	�̂
u1

� − iu2
�

�2
+ �̂†v1

� − iv2
�

�2

 .

�26�

Therefore ĉ �ĉ†� annihilates�creates� a quasiparticle on en-
ergy level E+. The original twofold degeneracy between state
with no occupation ĉ�0�=0 and occupied �1�= ĉ†�0� is lifted
by energy splitting E+.

To calculate the energy of 
+, we employ the standard
method based on the wave function overlap.70 Suppose the
two vortices are placed symmetrically with respect to y axis:
R1= �R /2,0� and R2= �−R /2,0�. BdG equations are
HBdG
+=E+
+ , HBdG
1=0. We then multiply the first
equation by 
1

� and second by 
+
�, substract corresponding

terms, and integrate over region � which is the half plane
x� �0,�� , y� �−� ,�� arriving finally at the following ex-
pression for E+:

E+ =

�
�

d2r
1
†HBdG
+ − �

�

d2r
+
†HBdG
1

�
�

d2r
1
†
+

. �27�

This is the general expression for the energy splitting which
is used to evaluate E+ in px+ ipy SC and TI/SC heterostruc-
ture.

A. Splitting in spinless px+ ipy superconductor

We now calculate splitting for two vortices in spinless
px+ ipy superconductor. The denominator in Eq. �27� can be
evaluated quite straightforwardly ��d2r
1

†
+�1 /�2. With
the help of Green’s theorem the integral over half plane in

the numerator can be transformed into a line integral along
the boundary of �, namely, the y axis at x=0 which we
denote by ��

E+ =
2

m
�

��

dy	g�s�g��s�cos 2
2 cos 
2

+
g2�s�

s
sin 2
2 sin 
2 −

g2�s�
�


 �28�

where s=��R /2�2+y2 , tan 
2=2y /R. The function g�s� is
defined as g�s����s�exp�−s /��.

First we consider the regime where �0
2�2m�vF

2 and ra-
dial wave function of Majorana bound state has the form
�Eq. �7��. We are mainly interested in the behavior of energy
splitting at large R�� with � being the coherence length,
where our tunneling approximation is valid. Another length
scales in our problem is the length corresponding to the
bound state wave-function oscillations k=�2m�−�0

2 /vF
2 . In

the limit R�max�k−1 ,�� upon evaluating the integral �Eq.
�28�� we obtain

E+ =� 8

�

N1
2

m
� �2

1 + �2�1/4 1
�kR

exp�−
R

�
�	cos�kR + ��

−
2

�
sin�kR + �� +

2�1 + �2�1/4

�

 , �29�

where �=k� , 2�=arctan � and N1 is the normalization con-
stant defined in Eq. �7�. The expression of N1 is given in
Appendix and has the following asymptotes for ��1 and
� 1:

N1
2 = �

k

2�
� � 1

8

3�k2�4 �  1� . �30�

The exponential decay is expected due to the fact that Ma-
jorana bound states are localized in vortex core. In addition,
the splitting energy E+ oscillates with intervortex separation
R which can be traced back to interference between the wave
functions of the two Majorana bound states since they both
oscillates in space.

Of particular importance is the sign of splitting as noted in
Ref. 69. It determines which state is energetically favored
when tunneling interaction is present. If E+�0, �0� is fa-
vored whereas E+�0 favors �1�. We note here that the defi-
nition of states �0� and �1� relies on how we define the Dirac
fermion operator ĉ and ĉ†. Due to the presence of a constant
term together with trigonometric function, the sign of split-
ting can change. To figure out when the sign oscillates, we
require the amplitude of the trigonometric part is greater than
the constant part which gives

�1 +
4

�2 �
2�1 + �2�1/4

�
.

Solving this inequality yields �=k��8. Therefore in this
parameter regime the sign of splitting changes with distance
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R. Otherwise the splitting still shows oscillatory behavior but
the sign is fixed to be positive.

In weak-coupling superconductors where �0 !F or
equivalently kF��1, the expression for the energy splitting
�Eq. �29�� can be considerably simplified. In this case, �
�!F and k�kF. Keeping only terms that are leading order in
�kF��−1, we find

E+ �� 2

�
�0

cos�kFR + �
4 �

�kFR
exp�−

R

�
� , �31�

which is the expression reported in Ref. 55. A similar expres-
sion for splitting of a pair of Majorana bound states on
superconductor/2D topological insulator/magnet interface is
found in Ref. 72.

Next we consider a different limit �0
2�2m�vF

2 in which
the wave function of Majorana bound state for a single vor-
tex does not show any spatial oscillations. Thus, we expect
that tunneling splitting will show just an exponential decay
without any oscillations. The wave function �Eq. �8�� grows
exponentially when r→�

��r� �
1
�r

ek0r

with k0=��0
2 /vF

2 −2m�. The overall radial wave function de-
cays exponentially �exp�−k�r� where k�=1 /�−k0. In this
case, the tunneling approximation is only valid for k�R�1
since bound state wave function is localized approximately
within distance 1 /k� to vortex core. The resulting energy
splitting monotonically decays

E+ �� 2

�

N2
2

m
� 3

k0�
− 1� 1

�k�R
exp�− k�R� , �32�

where the normalization N2 is defined in Eq. �A4�. As �
approaches 0 there is a quantum phase transition between the
non-Abelian phase and Abelian phase. This transition is ac-
companied by closing of the gap and the Majorana bound
state is no longer localized since k�→0.

We briefly comment on the degeneracy splitting between
vortex zero modes in the ferromagnetic insulator/
semiconductor/superconductor hybrid structure proposed by
Sau et al.31 which can be modeled by spin-1/2 fermions with
Rashba spin-orbit coupling and s-wave pairing induced by
the superconducting proximity effect. Since time-reversal
symmetry is broken by the proximity-induced exchange
splitting, this system belongs to the same symmetry class as
spinless px+ ipy superconductor-class D. The connection be-
tween this hybrid structure and spinless px+ ipy can be made
more explicit by the following argument: the single particle
Hamiltonian after diagonalization yields two bands. Assum-
ing a large band gap �which is actually determined by ex-
change field�, one can project the full Hamiltonian onto the
lower band and then the effective Hamiltonian takes exactly
the form of spinless px+ ipy superconductor, see, for ex-
ample, the discussion in Ref. 32. Although analytical expres-
sion for Majorana bound state in vortex core is not available,
the solution behaves qualitatively similar to the one in spin-

less px+ ipy superconductor. Therefore, we expect that split-
ting should also resemble that of spinless px+ ipy supercon-
ductor.

B. Splitting in TI/SC heterostructure

In this section we discuss the case of vortex-vortex pair in
TI/SC heterostructure. We assume both vortices have vortic-
ity 1. Similar the case of px+ ipy superconductor, one can
transform the surface integral over half plane � to a line
integral along its boundary ��. Exploiting the explicit ex-
pressions for the zero mode solution, we arrive at

�
�

d2r
1
†HBdG
+ − �

�

d2r
+
†HBdG
1

= − 2�2v�
−�

�

dy�↑�s��↓�s�cos 
2, �33�

where s=��R /2�2+y2 , cos 
2=R /2s.
First we consider the case with finite �. There are two

length scales: Fermi wavelength kF
−1= v

� and coherence length
�= v

�0
. We evaluate the integral �Eq. �33�� in the limit where

R is large compared to both kF
−1=v /� and �

E+ �
4N3

2v
��kF�1 + kF

2�2�1/4

cos�kFR + ��
�R/�

exp�−
R

�
� , �34�

where 2�=arctan�kF�� and the normalization N3 is given by
Eq. �A7�. One can notice that the splitting, including its sign,
oscillates with the intervortex separation R when R is large.
In the limit of large �, say kF��1, Eq. �34� can be simplified
to

E+ �
2�0

��

cos�kFR +
�

4
�

�kFR
exp�−

R

�
� . �35�

We now turn to the limit where � is very close to Dirac
point, i.e., �→0, kF� 1. We evaluate the integral for �
 R kF

−1.

E+ � −
2�

��
�R

�
�3/2

exp�−
R

�
� , �36�

where we have made use of asymptote of N3 in the limit
kF� 1. Equation �36� implies that for fixed R the splitting
vanishes as � approaches Dirac point. Actually this fact can
be easily seen from �Eq. �33�� without calculating the inte-
gral. Because at �=0 either �↑ or �↓ vanishes, the splitting
which is proportional to the product of �↓ and �↑ is zero. The
same result for splitting at �=0 has also been obtained in
Ref. 49.

We now show that vanishing of the splitting at �=0 is a
direct consequence of chiral symmetry. At �=0 zero modes
carry chirality which labels the eigenvalues of �5. More spe-
cifically, wave function is an eigenstate of �5: �5
i=�
i.
Consider an arbitrary perturbation represented by O to the
ground-state manifold expanded by these local zero modes.
To leading order in perturbation theory its effect is deter-
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mined by matrix element Oij = �
i�O�
 j�. Now assume that

i and 
 j have the same chirality �which means that vorti-
ces i and j have identical vorticity�. If the perturbation O
preserves chiral symmetry, i.e., ��5 ,O
=0, then

�
i���5,O
�
 j� = 2��
i�O�
 j� = 0. �37�

Therefore matrix element �
i�O�
 j� vanishes identically.
Tunneling obviously preserves chiral symmetry so there is
no splitting between two vortices with the same vorticity
from this line of reasoning. As discussed below this fact
actually holds beyond perturbation theory and the robustness
of zero modes in the presence of chiral symmetry is ensured
by an index theorem.

IV. ATIYAH-SINGER-TYPE INDEX THEOREM

Index theorem provides an intelligent way of understand-
ing the topological stability of zero modes. It is well-known
that one can relate the analytical index of an elliptic differ-
ential operator �Dirac operator� to the topological index
�winding number� of the background scalar field in 2D �46�
through the index theorem. Since BdG Hamiltonian for
TI/SC system at �=0 can be presented as a Dirac operator
�see Eq. �16��, we give a brief review of this index theorem,
see also recent exposition in Ref. 73. Specifically, the Hamil-
tonian for TI/SC heterostructure can be written as

HD = i� · �+ � · n , �38�

where n= �Re � ,−Im �� field describes the nontrivial con-
figuration of the superconducting order parameter. We as-
sume the following boundary condition for n field:

�n�r�� → const as�r� → � . �39�

As mentioned above, this model Hamiltonian has particle-
hole symmetry, time-reversal symmetry and chiral symmetry
which is given by �5. It anticommutes with the Dirac Hamil-
tonian ��5 ,HD
=0. Therefore, all zero modes 
0 of HD are
eigenstates of �5. Since ��5�2=1 eigenvalues of �5 are �1.
We define � chirality of zero modes as �5
0

�= �
0
�. The

analytical index of HD is defined as

indHD = n+ − n−, �40�

where n� are number of zero modes with � chirality.
The index theorem for the Hamiltonian HD states that the

analytical index is identical to the winding number of the
background scalar field in the two-dimensional space46

indHD = −
1

2�
� dix"abn̂a�in̂b, �41�

where n̂=n / �n�. According to the index theorem, the number
of zero modes is determined by the topology of order param-
eter at infinity. The right hand side is ensured to be an integer
by the fact that the homotopy group �1�S1�=Z. If we have a
vortex in the system with vorticity l, the right hand side of
�Eq. �41�� evaluates exactly to l. Thus the index theorem
implies that the Dirac Hamiltonian has at least l zero modes
which agrees with explicit solution obtained by Jackiw and

Rossi.45 This conclusion can be generalized to the case
where multiple vortices are present. In that case the right
hand side is basically the sum of vorticities of all vortices.

The index theorem �Eq. �41�� requires chiral symmetry
which is broken by presence of a finite chemical potential
��0. Now we argue that when chiral symmetry is broken
the Majorana zero modes admit a Z2 classification corre-
sponding to even-odd number of zero-energy solutions. Gen-
erally speaking, a small chiral symmetry breaking term cause
coupling between zero modes and split them away from zero
energy. However, due to particle-hole symmetry, the number
of zero modes that are split by chiral symmetry breaking
term must be even. So the parity of the topological index is
preserved in the generic case. This is consistent with an ex-
plicit solutions of zero mode in TI/SC heterostructure with
finite chemical potential. Thus, we conclude that without chi-
ral symmetry the Majorana zero modes bound to vortices are
classified by Z2 corresponding to even or odd number of zero
modes.

Now we can fit our splitting calculation into the general
picture set by index theorem. As being argued above, Majo-
rana zero modes in spinless px+ ipy superconductor is classi-
fied by Z2. When there are two vortices in the bulk, the
topological index of order parameter is 2 thus there is no
zero mode and we find the splitting as expected. The same
applies to two vortices in TI/SC heterostructure with ��0.
However, as we have seen in the calculation the splitting
vanishes for �=0. This should not be surprising since ac-
cording to index theorem, there should be at least two zero
modes associated with total vorticity 2 which is the case for
two vortices.

Comparison with the splitting calculations in other systems

Recently numerical calculations of the degeneracy split-
ting have been performed for other systems supporting non-
Abelian Ising anyons.51,52,54 In all these calculations it was
found that the splitting has qualitatively similar behavior-
there is an exponential decay with the oscillating prefactor
which stems from the spatial oscillations of Majorana bound
states. In the case of Moore-Read quantum Hall state,52 the
splitting between two quasiholes exponentially decays and
oscillates with the magnetic length lc= #

eB since there only
one length scale in the problem. The oscillatory behavior is
also predicted for pair of vortex excitations in the B-phase of
Kitaev’s honeycomb lattice model in an external magnetic
field.54

V. COLLECTIVE STATES OF MANY-ANYON SYSTEM

The microscopic calculations of the degeneracy splitting
for a pair of vortices are important for understanding the
collective states of anyons arising on top of the non-Abelian
parent state when many Majorana fermions �Ising anyons�
are present.69,74–77 Essentially, the sign of the splitting favors
certain fusion channel �1 or � in the terminology of Ref. 1�
when two vortices carrying Majorana fermions are brought
together. These fusion channels correspond to having a fer-
mion ��-channel when E+�0� or no fermion �1-channel
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when E+�0� left upon fusing of two anyons.
For pedagogical reason we start with the dilute anyon

density limit assuming that the average distance between
Majorana fermions is large compared with the coherence
length �. In this regime, the many anyon state of the system
will resemble gas of weakly bound pairs of anyons formed
out of two anyons separated by the smallest distance. Be-
cause of the exponential dependence of the energy splitting
the residual “interactions” with other anyons are exponen-
tially smaller and can be ignored. In this scenario the parent
state remains unchanged.

When the density of anyons is increased so that the aver-
age distance between them becomes on the order of the Ma-
jorana bound state decay length �coherence length � in
p-wave superconductors or magnetic length lc in Quantum
Hall states� the system can form a nontrivial collective liquid
�Wigner crystal of anyons or some other incompressible liq-
uid state�. This question has been investigated in Refs. 69
and 78–80. Although our approach used to calculate energy
splitting breaks down in this regime and one should resort to
numerical calculations for the magnitude of the splitting, we
believe that qualitative form of the splitting will remain the
same. It is interesting to discuss the collective state that
forms in this regime. Remarkably, it was shown in Ref. 69
that depending on the fusion channel �i.e., sign of the split-
ting� the collective state of anyons may be Abelian or non-
Abelian. This result was obtained assuming that the magni-
tude of the splitting is constant and the sign of the splitting is
the same for all anyons �positive or negative�. However, be-
cause of the prefactor changing rapidly with the Fermi wave-
length we expect the magnitude of the splitting energy to be
random realizing random bond Ising model discussed in
Refs. 69 and 81.

Finally, we mention that our calculations above and all
existing studies of interacting many-anyon systems treat host
vortices as classical objects with no internal dynamics. This
is a well-defined mathematical framework, which corre-
sponds to the BCS mean-field approximation. In real super-
conductors, however, there are certainly corrections to it. The
order parameter field, ��r , t�, which describes a certain vor-
tex configuration has a nontrivial dynamics and fluctuates in
both space and time. At low temperatures, when the system
is fully gapped, these fluctuation effects are suppressed in the
bulk but they are always significant in the vicinity of the
vortex core, where the order parameter vanishes. This dy-
namics gives rise to an effective motion of a vortex as well
as to the dynamics of its shape and the radial profile. The
relevant length-scales of these effects certainly exceed the
Fermi wavelength, which is the smallest length-scale in the
problem in most realistic systems. Even if the vortex is
pinned, e.g., by disorder, its motion can be constrained only
up to a mean-free path or another relevant length-scale,
which is still much larger than the Fermi wavelength for
local superconductivity to exist. These considerations sug-
gest that the intervortex separation between quantum vortices
has an intrinsic quantum uncertainty, which is expected to
much exceed the inverse Fermi wave-vector. This makes the
question of the sign of Majorana mode coupling somewhat
ill defined in the fully quantum problem. Indeed we found
the energy splitting to behave as �E�r�= ��E0�r��cos�kFr+��,

where ��E0�r�� is an exponentially small magnitude of cou-
pling insensitive to any dynamics of r�t�. The cosine factor,
which determines the sign, is, however, expected to be very
much sensitive to quantum dynamics. To derive the actual
microscopic model even in the simplest case of two non-
Abelian anyons living in the cores of quantum vortices is a
tremendously complicated problem, which requires a self-
consistent treatment of the vortex order-parameter field and
fermionic excitations beyond mean-field. However, one can
argue that the outcome of such a treatment would be an
effective theory where the eikFr�t� factor that appears in Ma-
jorana interactions, should be replaced with a random
quantum-fluctuating phase �c.f., Ref. 82�, ei��t�, whose dy-
namics is governed by an effective action of type, S���
��d	���−�0�2+c��	��2�. This generally resembles a gauge
theory but of an unusual type, and at this stage it is unclear
what collective many-anyon state such a theory may give
rise to.

VI. CONCLUSIONS

In this paper, we address the problem of topological de-
generacy lifting in topological superconductors characterized
by the presence of Majorana zero-energy states bound to the
vortex cores. We calculate analytically energy splitting of
zero-energy modes due to the intervortex tunneling. We con-
sider here canonical model of topological superconductor,
spinless px+ ipy superconductor, as well as the model of
Dirac fermions coupled to superconducting scalar field. The
latter is realized at the topological insulator/s-wave super-
conductor interface. In the case of spinless px+ ipy supercon-
ductor, we find that, in addition to the expected exponential
decay, the splitting energy for a pair of vortices oscillates
with distance in weak-coupling superconductor and these os-
cillations become over-damped as the magnitude of the
chemical potential is decreased. In the second model, the
splitting energy oscillates for finite chemical potential and
vanishes at �=0. The vanishing of splitting energy is a con-
sequence of an additional symmetry, the chiral symmetry,
emerging in the model when chemical potential is exactly
equal to zero. We show that this fact is not accidental but
stems from the index theorem which relates the number of
zero modes of the Dirac operator to the topological index of
the order parameter. Finally, we discuss the implications of
our results for many-anyon systems.

Note added. Recently, we became aware of a related
preprint83 by T. Mizushima and K. Machida, which has some
overlap with our results.
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APPENDIX: NORMALIZATION OF MAJORANA BOUND
STATE WAVE FUNCTION

In this appendix we present expressions for the normal-
ization constants of Majorana bound state radial wave func-
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tions in Eqs. �7�, �8�, and �21�. These constants are expressed
in terms of hypergeometric functions.

Normalization constant N1 appearing in Eq. �7� is defined
as

4�N1
2�

0

�

rdrJ1
2�k1r�e−2r/� = 1, �A1�

where k1=�2m�−�0
2 /vF

2 . Evaluation of the integral yields

N1
2 =

8

3�k1
2�4

2F1� 3
2 , 5

2 ;3;− k1
2�2� �A2�

with its asymptotes given by

N1
2 ��

8

3�k1
2�4 k1�  1

k1

2�
k1� � 1� . �A3�

Now we turn to N2. Similarly, it’s determined by

4�N2
2�

0

�

rdrI1
2�k2r�e−2r/� = 1, �A4�

where k2=��0
2 /vF

2 −2m�. Since ��0, k2� is always smaller
than 1. We find N2 is given by

N2
2 =

8

3�k2
2�4

2F1� 3
2 , 5

2 ;3;k2
2�2� �A5�

Finally, the normalization constant of wave function in Eq.
�21� can be calculated from

4�N3
2�

0

�

rdr	Jm
2 ��

v
r� + Jm+1

2 ��

v
r�
e−2r/� = 1, �A6�

which yields

N3
2 =

8

��2�82F1� 1
2 , 3

2 ;1;− �2� + 3�2
2F1� 3

2 , 5
2 ;3;− �2��

�A7�

with �=�� /v. It has the following asymptotes:

N3
2 ��

1

��2 �  1

�

2�2 � � 1.� �A8�
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